Chrome Extension
WeChat Mini Program
Use on ChatGLM

Drag And Heat Flux Reduction Using Counterflow Jet And Spike-Analysis Of Their Equivalence For A Blunt Cone Geometry At Mach 8

B. John, D. Bhargava, S. Punia,P. Rastogi

JOURNAL OF APPLIED FLUID MECHANICS(2021)

Cited 0|Views1
No score
Abstract
This study aims to explore equivalence between active and passive flow control techniques in reducing the wave drag and surface heat flux over a blunt cone model kept in Mach 8 stream. Computational investigations were carried out by using finite volume-based compressible flow solver. Throughout the study, the solution of governing equations is sought by assuming two dimensional-axisymmetric nature of the flowfield. Both counter flow-stagnation point injection and forward facing-physical spike are considered to mitigate the excess drag and heat flux experienced by a blunt body representing the nose cone section of a hypersonic vehicle. Eventually, based on identified drag reductions, the present study proposes equivalence cases between these two methods. It is shown that a pointed spike of L/D=1 provides almost the same drag reduction as the counterflow injection jet with a pressure ratio of 8.25. Similarly, other equivalence cases are identified and the physics behind them is explored. The identified equivalence is expected to help the designers in effectively replacing one technique with another according to the requirement. Equivalence matrix is presented for different spike cases in terms of injection ratios of counterflow injection.
More
Translated text
Key words
Counterflow injection, Physical spike, Blunt body, Hypersonic, Drag reduction, Aerodynamic drag, Shock interaction, Recirculation region
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined