Direct Synthesis Of Polycarbonate Diols From Atmospheric Flow Co2 And Diols Without Using Dehydrating Agents

GREEN CHEMISTRY(2021)

引用 17|浏览1
暂无评分
摘要
Polymer synthesis with CO2 as a C1 chemical has attracted much attention from the viewpoint of green chemistry. The direct transformation of CO2 and diols into polycarbonate diols is promising as an alternative method to the hazardous phosgene process, however, challenging due to the inert characteristic of CO2 and thermodynamic limitation. Herein, we present the direct synthesis of polycarbonate diols from atmospheric pressure CO2 and alpha,omega-diols using a heterogeneous CeO2 catalyst and a CO2 flow semi-batch reactor. The target alternating polycarbonate diol from CO2 and 1,6-hexanediol was obtained with high yield (92%) and selectivity (97%) without using any dehydrating agents. Activation of atmospheric pressure CO2 by a CeO2 catalyst and the shift of equilibrium towards the product by removing the coproduced water (gas stripping) are responsible for the high yield. The flow reaction system with a CeO2 catalyst was applicable to the reactions of CO2 and primary mono-alcohols or 1,2-diols, giving the target organic carbonates in high selectivity (>99%).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要