A non-contact system for the assessment of hand motor tasks in people with Parkinson’s disease

SN APPLIED SCIENCES(2021)

Cited 1|Views2
No score
Abstract
Clinical diagnosis of Parkinson’s disease (PD) motor symptoms remains a problem. Most of the current studies focus on objective evaluations to make the evaluation more reliable. Most of these systems are based on the use of inertial and electromyographic sensors that require contact with the body part being assessed. Contact sensors restrict natural movement, may be uncomfortable and may require preparation of the body, which may cause irritation. As an alternative to contact sensors for the study of hand motor tasks performed by subjects with and without PD, electrical potential sensing technology is used in this research. A custom hardware has been designed to enable data collection by hand movement. A micro-machine system validated the developed system, and a relationship model was established between hand displacement and non-contact capacitive (NCC) sensor response. An experiment was conducted, including 57 subjects, 30 with PD (experimental group) and 27 healthy control group, followed by an analysis of statistical features extracted from the instantaneous mean frequency (IMNF) of NCC sensor. These results were compared with those obtained from gyroscope signals that are considered in the field to be the gold standard. As a result, NCC responses were correlated linearly with hand displacement (R 2 = 0.7692 and R_adj^2 = 0.7631). The statistical evaluation of IMNF features showed, that both, contact and non-contact sensors, were able to discriminate movement patterns of the control group from the experimental one. The results confirm statistical similarity between features extracted from NCC and gyroscope signals.
More
Translated text
Key words
Hand motor task, Instantaneous mean frequency, Non-contact capacitive sensor, Parkinson's disease
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined