Unravelling the pore network and its behaviour: An integrated NMR, MICP, XCT and petrographical study of continental spring carbonates from the Ballik area, SW Turkey

DEPOSITIONAL RECORD(2022)

引用 9|浏览17
暂无评分
摘要
Applying an integrated methodology, including petrography, mercury injection capillary pressure, laboratory nuclear magnetic resonance and X-ray computed tomography, on continental spring carbonate reservoir analogue samples is a prerequisite to understand plug scale porosity and permeability heterogeneities. Depending on the dominant pore type in a sample, the orientation and distribution of the pores, pore network connectivity varies from poor to excellent in these continental spring carbonates. The latter exhibit large-scale ranges for both porosity (3%-25%) and permeability (0.004-3,675 mD). Facies classification alone proved insufficient to link porosity and permeability, due to intrafacies pore network variability. Better assessment of reservoir properties can be achieved by subdividing facies into lithotype and pore type classes. Obtained pore network data addresses the pore types, pore (throat) sizes, number of pore compartments, and allow a subdivision of the pore size distributions into unimodal, bimodal and atypical types. There is no micropore compartment present in samples with unimodal mercury injection capillary pressure and nuclear magnetic resonance distributions. Decoupled micropore compartments are observed in samples with bimodal mercury injection capillary pressure and nuclear magnetic resonance distributions, which show isolating calcite rims, and have limited permeabilities. The cement rims decrease the macropore connectivity and decouple the micropore compartments, which reside in micritic dendrites. The micropore compartment (r < 1 mu m) is coupled with the mesopore (r = 1-15 mu m) and macropore compartment (r > 15 mu m) for atypical samples which lack pore-lining calcite rims.
更多
查看译文
关键词
continental spring carbonates, MICP, NMR, permeability, pore types, porosity, XCT
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要