Determination Of Mic Values Of Various Antimicrobial Agents And Presence Of Resistance Genes In Pasteurella Multocida Strains Isolated From Bovine

KAFKAS UNIVERSITESI VETERINER FAKULTESI DERGISI(2021)

Cited 1|Views0
No score
Abstract
Pasteurella multocida is an important bacterium that can cause respiratory infections in cattle. Due to the usage of antimicrobial agents in the treatment of the disease frequently, it is critical to follow the antimicrobial susceptibility of the isolates. In this study, minimal inhibitory concentrations (MIC) of various antimicrobial agents and presence of genes related to resistance were investigated in 59 P. multocida strains isolated from the respiratory tract of cattle. According to MIC values determined by E-test, all of the isolates were susceptible to enrofloxacin, chloramphenicol and gentamicin, but resistant to cefoxitin. In addition, high resistance to ampicillin (88.14%), tilmicosin (64.41%), clindamycin (83.05%) and streptomycin (59.32%) were observed in the isolates. When the resistance genes were examined by PCR, it was determined that blaROB-1, tet H, sul II, str A/aphA 1 and erm 42 genes could play an important role in penicillin, tetracycline, sulfamethoxazole + trimethoprime, aminoglycoside and macrolide resistance, respectively. It was concluded that the usage of ampicillin, tetracycline, sulfamethoxazole + trimethoprime, macrolide and aminoglycosides should be considered for the treatment of respiratory tract infections caused by P. multocida in cattle. Also, it was determined that antimicrobial resistance genes could play an important role in the development of resistance in P. multocida.
More
Translated text
Key words
Pasteurella multocida, Antimicrobial susceptibility, MIC, Resistance gene
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined