Light–matter interaction at atomic scales

NATURE REVIEWS PHYSICS(2021)

引用 43|浏览7
暂无评分
摘要
Light–matter interaction drives many systems, such as optoelectronic devices like light-emitting diodes and solar cells, biological structures like photosystem II and potential future quantum devices. The absorption or emission of light typically occurs on the sub-nanometre scale and the involved processes take place on attosecond to picosecond timescales. Light–matter interaction can be studied at atomic space-time scales by using a scanning tunnelling microscope and coupling light into or extracting light from the tunnel junction. Electromagnetic radiation couples with matter through the interaction with charge carriers, leading to excitations such as electronic transitions, collective oscillations, excitons and spin flips. These excitations can be studied with high spatial and temporal resolution using approaches in which light interacts with the tunnel junction itself or with a quantum system in the junction. This Review discusses the powerful union of photonics and scanning probe techniques.
更多
查看译文
关键词
Nanoscience and technology,Quantum physics,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要