Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY(2021)

Cited 24|Views2
No score
Abstract
Fipronil is a broad-spectrum phenyl-pyrazole insecticide that is widely used in agriculture. However, in the environment, its residues are toxic to aquatic animals, crustaceans, bees, termites, rabbits, lizards, and humans, and it has been classified as a C carcinogen. Due to its residual environmental hazards, various effective approaches, such as adsorption, ozone oxidation, catalyst coupling, inorganic plasma degradation, and microbial degradation, have been developed. Biodegradation is deemed to be the most effective and environmentally friendly method, and several pure cultures of bacteria and fungi capable of degrading fipronil have been isolated and identified, including Streptomyces rochei , Paracoccus sp . , Bacillus firmus , Bacillus thuringiensis , Bacillus spp., Stenotrophomonas acidaminiphila , and Aspergillus glaucus . The metabolic reactions of fipronil degradation appear to be the same in different bacteria and are mainly oxidation, reduction, photolysis, and hydrolysis. However, the enzymes and genes responsible for the degradation are somewhat different. The ligninolytic enzyme MnP, the cytochrome P450 enzyme, and esterase play key roles in different strains of bacteria and fungal. Many unanswered questions exist regarding the environmental fate and degradation mechanisms of this pesticide. The genes and enzymes responsible for biodegradation remain largely unexplained, and biomolecular techniques need to be applied in order to gain a comprehensive understanding of these issues. In this review, we summarize the literature on the degradation of fipronil, focusing on biodegradation pathways and identifying the main knowledge gaps that currently exist in order to inform future research. Key points • Biodegradation is a powerful tool for the removal of fipronil. • Oxidation, reduction, photolysis, and hydrolysis play key roles in the degradation of fipronil. • Possible biochemical pathways of fipronil in the environment are described.
More
Translated text
Key words
Fipronil, Abiotic degradation, Biodegradation, Metabolic pathways, Molecular mechanisms
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined