A dynamic range extension system for LHAASO WCDA-1

F. Aharonian,Q. An, Axikegu,L. X. Bai, Y. X. Bai,Y. W. Bao,D. Bastieri,X. J. Bi,Y. J. Bi,H. Cai,J. T. Cai,Z. Cao,Z. Cao,J. Chang,J. F. Chang,X. C. Chang,B. M. Chen,J. Chen,L. Chen,L. Chen,L. Chen, M. J. Chen,M. L. Chen,Q. H. Chen,S. H. Chen,S. Z. Chen,T. L. Chen,X. L. Chen,Y. Chen,N. Cheng,Y. D. Cheng,S. W. Cui,X. H. Cui,Y. D. Cui,B. Z. Dai,H. L. Dai,Z. G. Dai, Danzengluobu,D. della Volpe,B. D’Ettorre Piazzoli,X. J. Dong,J. H. Fan,Y. Z. Fan,Z. X. Fan,J. Fang,K. Fang,C. F. Feng,L. Feng,S. H. Feng,Y. L. Feng,B. Gao,C. D. Gao,Q. Gao,W. Gao,M. M. Ge,L. S. Geng,G. H. Gong,Q. B. Gou,M. H. Gu,J. G. Guo,X. L. Guo,Y. Q. Guo,Y. Y. Guo,Y. A. Han,H. H. He,H. N. He,J. C. He,S. L. He,X. B. He,Y. He,M. Heller,Y. K. Hor,C. Hou,X. Hou,H. B. Hu,S. Hu,S. C. Hu,X. J. Hu,D. H. Huang,Q. L. Huang,W. H. Huang,X. T. Huang,Y. Huang,Z. C. Huang,F. Ji,X. L. Ji,H. Y. Jia,K. Jiang,Z. J. Jiang,C. Jin,D. Kuleshov,K. Levochkin,B. B. Li,C. Li,C. Li,F. Li,H. B. Li,H. C. Li, H. Y. Li,J. Li,K. Li,W. L. Li,X. Li,X. Li,X. R. Li, Y. Li,Y. Z. Li, Z. Li, Z. Li,E. W. Liang,Y. F. Liang,S. J. Lin,B. Liu,C. Liu,D. Liu,H. Liu,H. D. Liu,J. Liu,J. L. Liu,J. S. Liu, J. Y. Liu,M. Y. Liu,R. Y. Liu,S. M. Liu,W. Liu,Y. N. Liu,Z. X. Liu,W. J. Long,R. Lu,H. K. Lv,B. Q. Ma,L. L. Ma,X. H. Ma,J. R. Mao,A. Masood,W. Mitthumsiri,T. Montaruli,Y. C. Nan,B. Y. Pang,P. Pattarakijwanich,Z. Y. Pei,M. Y. Qi,D. Ruffolo,V. Rulev,A. Sáiz,L. Shao,O. Shchegolev,X. D. Sheng,J. R. Shi,H. C. Song,Yu. V. Stenkin,V. Stepanov,Q. N. Sun, X. N. Sun,Z. B. Sun,P. H. T. Tam,Z. B. Tang,W. W. Tian,B. D. Wang,C. Wang,H. Wang,H. G. Wang,J. C. Wang,J. S. Wang,L. P. Wang,L. Y. Wang,R. N. Wang,W. Wang,W. Wang,X. G. Wang,X. J. Wang,X. Y. Wang, Y. D. Wang,Y. J. Wang,Y. P. Wang,Z. Wang,Z. Wang, Z. H. Wang,Z. X. Wang,D. M. Wei,J. J. Wei,Y. J. Wei,T. Wen,C. Y. Wu,H. R. Wu,S. Wu,W. X. Wu, X. F. Wu,S. Q. Xi,J. Xia,J. J. Xia,G. M. Xiang,G. Xiao,H. B. Xiao,G. G. Xin,Y. L. Xin,Y. Xing,D. L. Xu,R. X. Xu,L. Xue,D. H. Yan,C. W. Yang,F. F. Yang,J. Y. Yang,L. L. Yang,M. J. Yang,R. Z. Yang,S. B. Yang,Y. H. Yao,Z. G. Yao,Y. M. Ye,L. Q. Yin,N. Yin,X. H. You,Z. Y. You,Y. H. Yu,Q. Yuan,H. D. Zeng,T. X. Zeng,W. Zeng,Z. K. Zeng,M. Zha,X. X. Zhai,B. B. Zhang,H. M. Zhang,H. Y. Zhang,J. L. Zhang,J. W. Zhang,L. Zhang,L. Zhang,L. X. Zhang,P. F. Zhang,P. P. Zhang,R. Zhang, S. R. Zhang, S. S. Zhang,X. Zhang,X. P. Zhang,Y. Zhang,Y. Zhang,Y. F. Zhang,Y. L. Zhang,B. Zhao,J. Zhao,L. Zhao,L. Z. Zhao,S. P. Zhao,F. Zheng,Y. Zheng,B. Zhou,H. Zhou,J. N. Zhou,P. Zhou,R. Zhou,X. X. Zhou,C. G. Zhu,F. R. Zhu,H. Zhu,K. J. Zhu,X. Zuo

Radiation Detection Technology and Methods(2021)

Cited 1|Views7
No score
Abstract
Purpose The main scientific goal of LHAASO-WCDA is to survey gamma-ray sources with energy from 100 GeV to 30 TeV. To observe high-energy shower events, especially to measure the energy spectrum of cosmic rays from 100 TeV to 10 PeV, a dynamic range extension system (WCDA++) is designed to use a 1.5-inch PMT with a dynamic range of four orders of magnitude for each cell in WCDA-1. Method The dynamic range is extended by using these PMTs to measure the effective charge density in the core region of air shower events, which is an important parameter for identifying the composition of primary particles. Result and Conclusion The system has been running for more than one year. In this paper, the details of the design and performance of WCDA++ are presented.
More
Translated text
Key words
Air shower,Cosmic ray,Dynamic range,Orders of magnitude (time),Measure (mathematics),Nuclear physics,Energy (signal processing),Effective nuclear charge,Physics,Extension (predicate logic)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined