Exploring the potential of tetraazaacene derivatives as photovoltaic materials with enhanced photovoltaic parameters

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY(2022)

引用 22|浏览5
暂无评分
摘要
A series of D-pi-A type molecules have been designed for their potential use in organic photovoltaic devices. Photovoltaic and optoelectronic characteristics of newly designed molecules have been explored by comparing with a reference molecule R comprising of the central core (2,3,8,9-tetrakis(thiophen-2-ylethynyl)-5,7,10,12-tetrakis((trimethylsilyl)ethynyl)pyrazino[2,3-b]phenazine) and pi-bridge (thiophene). The end groupsare (2-(2-ethylidene-3-oxo-2,3-dihydro-1H-inden-1 ylidene)malononitrile), (2-ethylidenemalonitrile), (methyl 2-cyanoacrylate) and (3-methyl-5-methylene-2-thioxothiazolidin-4-one) in the newly designed molecules. Among the investigated molecules M1 and M2 exhibit a broad absorption range of 627 and 626 nm with respect to the reference. All the designed molecules exhibited a lower bandgap as compared to R which indicates a better transfer of electron density from highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO). The reorganization energy values show that all designed molecules have efficient charge transport capability. This study proves that end-capped acceptor modification is an effective strategy for designing optimistic molecule for high performance future organic solar cells fabrication.
更多
查看译文
关键词
acceptor, open circuit voltage, photophysical properties, photovoltaics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要