MXene-GaN van der Waals metal-semiconductor junctions for high performance multiple quantum well photodetectors

LIGHT-SCIENCE & APPLICATIONS(2021)

Cited 55|Views17
No score
Abstract
A MXene-GaN-MXene based multiple quantum well photodetector was prepared on patterned sapphire substrate by facile drop casting. The use of MXene electrodes improves the responsivity and reduces dark current, compared with traditional Metal-Semiconductor-Metal (MSM) photodetectors using Cr/Au electrodes. Dark current of the device using MXene-GaN van der Waals junctions is reduced by three orders of magnitude and its noise spectral intensity shows distinct improvement compared with the traditional Cr/Au–GaN–Cr/Au MSM photodetector. The improved device performance is attributed to low-defect MXene-GaN van der Waals interfaces. Thanks to the high quality MXene-GaN interfaces, it is possible to verify that the patterned substrate can locally improve both light extraction and photocurrent collection. The measured responsivity and specific detectivity reach as high as 64.6 A/W and 1.93 × 10 12 Jones, respectively, making it a potential candidate for underwater optical detection and communication. The simple fabrication of MXene-GaN-MXene photodetectors spearheaded the way to high performance photodetection by combining the advantages of emerging 2D MXene materials with the conventional III-V materials.
More
Translated text
Key words
Applied optics,Optoelectronic devices and components,Physics,general,Applied and Technical Physics,Atomic,Molecular,Optical and Plasma Physics,Classical and Continuum Physics,Optics,Lasers,Photonics,Optical Devices
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined