Supersonic Flutter Control And Optimization Of Metamaterial Plate

CHINESE JOURNAL OF AERONAUTICS(2021)

Cited 7|Views1
No score
Abstract
A metamaterial plate is designed by embedding a periodic array of local nonlinear resonators for its supersonic flutter control. Based on the von Karman large deformation theory and supersonic piston aerodynamic theory, the nonlinear aeroelastic equations of the metamaterial plate are obtained by using the Hamilton principle. The comparisons for aeroelastic behaviors of the metamaterial plate and pure plate show that the proposed metamaterial plate can lead to an enlarged flutter boundary and lower vibration amplitude. Furthermore, a parametric optimization strategy for local nonlinear resonators is proposed to improve the nonlinear flutter behaviors of the metamaterial plate, and a significant enhancement of passive control performance can be achieved through optimization design. The present study demonstrates that the design of the metamaterial plate can provide an effective approach and potential application for nonlinear flutter suppression of supersonic plate. (c) 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
More
Translated text
Key words
Local resonators, Metamaterial plate, Nonlinear aeroelastic responses, Parametric optimization design, Supersonic flutter control
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined