Model Reduction For Steady Hypersonic Aerodynamics Via Conservative Manifold Least-Squares Petrov-Galerkin Projection

AIAA JOURNAL(2021)

引用 10|浏览6
暂无评分
摘要
High-speed aerospace engineering applications rely heavily on computational fluid dynamics (CFD) models for design and analysis. This reliance on CFD models necessitates performing accurate and reliable uncertainty quantification (UQ) of the CFD models, which can be very expensive for hypersonic flows. Additionally, UQ approaches are many-query problems requiring many runs with a wide range of input parameters. One way to enable computationally expensive models to be used in such many-query problems is to employ projection-based reduced-order models (ROMs) in lieu of the (high-fidelity) full-order model (FOM). In particular, the least-squares Petrov-Galerkin (LSPG) ROM (equipped with hyper-reduction) has demonstrated the ability to significantly reduce simulation costs while retaining high levels of accuracy on a range of problems, including subsonic CFD applications. This allows LSPG ROM simulations to replace the FOM simulations in UQ studies, making UQ tractable even for large-scale CFD models. This work presents the first application of LSPG to a hypersonic CFD application, the Hypersonic International Flight Research Experimentation 1 (HIFiRE-1) in a three-dimensional, turbulent Mach 7.1 flow. This paper shows the ability of the ROM to significantly reduce computational costs while maintaining high levels of accuracy in computed quantities of interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要