Potential-Tuning In Quinone-Pyrrole Dyad-Based Conducting Redox Polymers

ELECTROCHIMICA ACTA(2021)

引用 1|浏览4
暂无评分
摘要
In this study, conducting redox polymers (CRPs), which consist of a polypyrrole conducting polymer backbone with attached quinone pendant groups, have been explored as electrode materials for organic batteries. A modular organic synthetic approach is presented that allows the assembly of pyrrole and quinone units into quinone-pyrrole dyads and modifying the dyads by varying the substitution pattern on the quinone moiety. These dyad monomers were copolymerized electrochemically with pyrrole to yield the CRPs with quinone formal potentials varying within a 0.6 V range. With access to CRP materials with tunable quinone formal potentials an all-organic water-based battery was constructed by choosing CRPs with different quinone potentials as anode and cathode material. Galvanostatic charge-discharge of the cell showed that the cell potentials coincided well with the difference in redox potential between the quinone substituents used in the anode and cathode CRP. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
更多
查看译文
关键词
Conducting redox polymer, Organic batteries, Quinone electrochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要