Implementation Of A Dark Hole Maintenance Algorithm For Speckle Drift In A High Contrast Space Coronagraph

SPACE TELESCOPES AND INSTRUMENTATION 2020: OPTICAL, INFRARED, AND MILLIMETER WAVE(2021)

引用 2|浏览7
暂无评分
摘要
Due to the limited number of photons, directly imaging planets requires long integration times. The wavefront must be stable on the same time scale which is often difficult in space due to thermal variations and vibrations. In this paper, we discuss the results of implementing a dark hole maintenance (DHM) algorithm (Pogorelyuk et. al. 2019)(1) on the High-contrast imager for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute (STScI). The testbed contains a pair of deformable mirrors (DMs) and a lyot coronagraph. The algorithm uses an Extended Kalman Filter (EKF) and DM dithering to predict the drifting electric field in the dark hole along with Electric Field Conjugation to cancel out the drift. The DM dither introduces phase diversity which ensures the EKF converges to the correct value. The DHM algorithm maintains an initial contrast of 8.5x10(-8) for 6 hrs in the presence of the DM actuator random walk drift with a standard deviation of 1.7 x 10(-3) nm/s.
更多
查看译文
关键词
Exoplanets, Focal Plane Estimation, Drift
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要