Using faecal metabarcoding to examine consumption of crop pests and beneficial arthropods in communities of generalist avian insectivores

IBIS(2022)

引用 12|浏览6
暂无评分
摘要
Generalist insectivorous birds can provide ecosystem services in agricultural landscapes by consuming arthropod pests, or they can provide disservices when they consume beneficial arthropods. To examine bird impacts on arthropod communities, including pest control services, we need to know which arthropods birds commonly consume. Faecal metabarcoding is an emerging technique that can be used to identify prey from faecal samples, often to the species level. We used faecal metabarcoding to study diets of birds inhabiting the ecotone between soybean fields and adjacent grasslands in a largely agricultural landscape in Illinois, USA, during the summer of 2017. Whereas previous studies have used faecal metabarcoding to compare bird diets among species or among capture sites, we analysed samples from multiple species within a community at replicate sites. We collected and sequenced DNA from 132 faecal samples from 25 bird species captured at six sites. We found that birds consumed an extremely large and varied diet that differed among both species and sites, suggesting that birds were consuming prey opportunistically as available at each site. Of the nine most commonly detected prey species, three are known pests of soybeans. Bird diets also contained significantly more species of herbivorous prey than natural enemies. Finally, we discovered that American Goldfinches Spinus tristis, a highly granivorous species, may consume arthropods more frequently than expected and thus may provide ecosystem services in agricultural landscapes. Our study demonstrates that birds within this system consume a large variety of prey, suggesting that they may be able to respond quickly to pest outbreaks and contribute to agricultural resiliency.
更多
查看译文
关键词
ecosystem disservices, ecosystem services, Illinois, molecular scatology, opportunistic foraging, soybeans
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要