Dna Methylation Of Fibroblast Phenotypes And Contributions To Lung Fibrosis

CELLS(2021)

Cited 3|Views3
No score
Abstract
Fibroblasts are an integral part of connective tissue and play a crucial role in developing and modulating the structural framework of tissues by acting as the primary source of extracellular matrix (ECM). A precise definition of the fibroblast remains elusive. Lung fibroblasts orchestrate the assembly and turnover of ECM to facilitate gas exchange alongside performing immune functions including the secretion of bioactive molecules and antigen presentation. DNA methylation is the covalent attachment of a methyl group to primarily cytosines within DNA. DNA methylation contributes to diverse cellular phenotypes from the same underlying genetic sequence, with DNA methylation profiles providing a memory of cellular origin. The lung fibroblast population is increasingly viewed as heterogeneous with between 6 and 11 mesenchymal populations identified across health and lung disease to date. DNA methylation has been associated with different lung fibroblast populations in health and with alterations in lung disease, but to varying extents. In this review, we will discuss lung fibroblast heterogeneity and the evidence for a contribution from DNA methylation to defining cell populations and alterations in disease.
More
Translated text
Key words
DNA methylation, fibroblast, phenotype, fibrosis, lung
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined