Concise Nanoplatform Of Phycocyanin Nanoparticle Loaded With Docetaxel For Synergetic Chemo-Sonodynamic Antitumor Therapy

ACS APPLIED BIO MATERIALS(2021)

Cited 7|Views1
No score
Abstract
Combined chemotherapy and sonodynamic therapy (chemo-SDT) based on the nanoplatform/nanocarrier is a potential antitumor strategy that has shown higher therapeutic efficacy than any monotherapy. Therefore, a safe and effective multifunctional system with a concise design and simple preparation process is urgently needed. In this work, by using a one-step cross-linking method, a multifunctional nanosystem, which employs phycocyanin nanoparticles (PCNPs) as a nanocarrier to deliver the chemotherapy drug docetaxel (DTX) and a nanosonosensitizer to generate reactive oxygen species (ROS), was prepared and evaluated (PCNP-DTX). Under low-intensity ultrasound irradiation, PCNP-DTX retained the ROS generation ability of phycocyanin and caused the destruction of mitochondrial potential. PCNP was also revealed to be an acidic and ultrasound-sensitive carrier with good biocompatibility. In addition to its cumulation behavior in tumors, PCNP can achieve tumor-targeted delivery and release of DTX. PCNP-DTX has also been proven to have a significant chemo-SDT synergy effect when low-intensity ultrasound was applied, showing enhanced antitumor activity both in vitro and in vivo. This study provides a concise yet promising nanoplatform based on the natural protein phycocyanin for achieving an effective, targeted, and synergetic chemo-SDT for antitumor therapy.
More
Translated text
Key words
phycocyanin, chemo-sonodynamic therapy, drug delivery, protein nanoparticle, docetaxel
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined