Radio Frequency Fingerprint Identification For Narrowband Systems, Modelling And Classification

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY(2021)

引用 74|浏览49
暂无评分
摘要
Device authentication is essential for securing Internet of things. Radio frequency fingerprint identification (RFFI) is an emerging technique that exploits intrinsic and unique hardware impairments as the device identifier. The existing RFFI literature focuses on experimental exploration but comprehensive modelling is missing. This paper systematically models impairments of transmitter and receiver in narrowband systems and carries out extensive experiments and simulations to evaluate their effects on RFFI. The modelled impairments include oscillator imperfections, imbalance of inphase (I) and quadrature (Q) branches of mixers and power amplifier (PA) nonlinearity. We then propose a convolutional neural network-based RFFI protocol. We carry out experimental measurements over three months and demonstrate that oscillator imperfections are not suitable for RFFI due to their unpredictable time variation caused by temperature change. Our simulation results show that our protocol can classify 50 and 200 devices with uniformly and randomly distributed IQ imbalances and PA nonlinearities with high accuracy, namely 99% and 89%, respectively. We also show that the RFFI has some tolerance on different receiver imbalances during training and classification. Specifically, the accuracy is shown to degrade less than 20% when the residual receiver's gain and phase imbalances are small. Based on the experimental and simulation results, we made recommendations for designing a robust RFFI protocol, namely compensate carrier frequency offset and calibrate IQ imbalances of receivers.
更多
查看译文
关键词
Receivers, Training, Protocols, Radio frequency, Narrowband, Radio transmitters, Internet of Things, Device authentication, radio frequency fingerprint identification, RF impairment, narrowband, convolutional neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要