Dimensional crossover and band topology evolution in ultrathin semimetallic NiTe 2 films

NPJ 2D MATERIALS AND APPLICATIONS(2021)

Cited 12|Views16
No score
Abstract
Nickel ditelluride (NiTe 2 ), a recently discovered Type-II Dirac semimetal with topological Dirac fermions near the Fermi energy, is expected to exhibit strong thickness-mediated electronic tunability and intrinsic two-gap superconductivity in the single-layer limit. Realizing such intriguing phenomena requires the fabrication of ultrathin NiTe 2 films and an understanding of the underlying physics that is still under debate. By conducting experimental band mappings of ultrathin films prepared with molecular beam epitaxy, we reveal spectroscopic evidence for the dimensionality crossover of single-crystalline ultrathin NiTe 2 films as a function of film thickness. As the film thickness increases from one to five layers, the gap in the conical topological surface states closes. Comparisons of experimental to first-principles results also highlight difficulties in fabricating atomically smooth single-layer NiTe 2 films. Our results not only provide further impetus for studying emergent phenomena in NiTe 2 but also underscore the limitations of fabricating NiTe 2 films for device applications.
More
Translated text
Key words
Electronic properties and materials,Spintronics,Surfaces,interfaces and thin films,Two-dimensional materials,Materials Science,general,Nanotechnology,Surfaces and Interfaces,Thin Films
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined