A Novel Hybrid Optimization for Cluster‐Based Routing Protocol in Information-Centric Wireless Sensor Networks for IoT Based Mobile Edge Computing

WIRELESS PERSONAL COMMUNICATIONS(2021)

引用 57|浏览0
暂无评分
摘要
In present days, the utilization of mobile edge computing (MEC) and Internet of Things (IoT) in mobile networks offers a bottleneck in the evolving technological requirements. Wireless Sensors Network (WSN) become an important component of the IoT and is the major source of big data. In IoT enabled WSN, a massive amount of data collection generated from a resource-limited network is a tedious process, posing several challenging issues. Traditional networking protocols offer unfeasible mechanisms for large-scaled networks and might be applied to IoT platform without any modifications. Information-Centric Networking (ICN) is a revolutionary archetype which that can resolve those big data gathering challenges. Employing the ICN architecture for resource-limited WSN enabled IoT networks may additionally enhance the data access mechanism, reliability challenges in case of a mobility event, and maximum delay under multihop communication. In this view, this paper proposes an IoT enabled cluster based routing (CBR) protocol for information centric wireless sensor networks (ICWSN), named CBR-ICWSN. The proposed model undergoes a black widow optimization (BWO) based clustering technique to select the optimal set of cluster heads (CHs) effectively. Besides, the CBR-ICWSN technique involves an oppositional artificial bee colony (OABC) based routing process for optimal selection of paths. A series of simulations take place to verify the performance of the CBR-ICWSN technique and the results are examined under several aspects. The experimental outcome of the CBR-ICWSN technique has outperformed the compared methods interms of network lifetime and energy efficiency.
更多
查看译文
关键词
Clustering,Routing,Information centric networking,Mobile Edge Computing,Wireless sensor networks,Metaheuristics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要