Resistance To Lenalidomide In Del(5q) Mds Is Mediated By Inhibition Of Drug-Induced Megakaryocytic Differentiation

BLOOD(2018)

Cited 2|Views14
No score
Abstract
The immunomodulatory drug lenalidomide (LEN) is the treatment of choice for del(5q) MDS patients. LEN has been shown to trigger the specific degradation of CSNK1A1 and IKZF1 proteins after binding the E3-ligase substrate adaptor CRBN. When brought below a certain expression threshold, CSNK1A1 deficiency activates a p53-dependent apoptotic response. Thus, the unique sensitivity of del(5q) cells to LEN is explained by CSNK1A1 haploinsufficiency in del(5q) MDS patients. Despite its efficacy, 50% of LEN-treated patients eventually relapse within an interval of 2-3 years after treatment. Treatment failure is associated to low platelet counts and occurrence of additional mutations, such as TP53. To identify novel genetic determinants of LEN resistance, we have compared whole genome sequencing data of paired samples from six del(5q) patients who have been treated with LEN and eventually became resistant to the treatment. We identified 2 patients with mutations in TP53. The remaining four presented RUNX1 alterations: two patients had protein coding mutations in RUNX1 and two had a significant reduction in RUNX1, but not TP53, transcript levels.
More
Translated text
Key words
lenalidomide,drug-induced
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined