Chrome Extension
WeChat Mini Program
Use on ChatGLM

Mechanical properties of multi-materials porous structures based on triply periodic minimal surface fabricated by additive manufacturing

RAPID PROTOTYPING JOURNAL(2021)

Cited 8|Views5
No score
Abstract
Purpose The purpose of this study is focused on the mechanical properties of multi-materials porous structures manufactured by selective laser melting (SLM). Design/methodology/approach The Diamond structure was designed by the triply periodic minimal surface function in MATLAB, and multi-materials porous structures were manufactured by SLM. Compression tests were applied to analyze the anisotropy of mechanical properties of multi-materials porous structures. Findings Compression results show that the multi-materials porous structure has a strong anisotropy behavior. When the compression force direction is parallel to the material arrangement, multi-materials porous structure was compressed in a layer-by-layer way, which is the traditional deformation of the gradient structure. However, when the compression force direction is perpendicular to the material arrangement, the compression curves show a near-periodic saw-tooth waveform characteristic, and this kind of structure was compressed consistently. It is demonstrated that the combination with high strength brittle material and low strength plastic material improves compression mode, and plastic material plays a role in buffering fracture. Originality/value This research provides a new method for the design and manufacturing of multi-materials porous structures and an approach to change the compression behavior of the porous structure.
More
Translated text
Key words
Additive manufacturing, Multi-materials, Mechanical property, Porous structure, Triply periodic minimal surface
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined