Optimized mechanical and impact performance of high strength tempo oxidized cellulose nanofibril (TOCNF)—epoxy laminates

CELLULOSE(2021)

引用 3|浏览0
暂无评分
摘要
In this work, TEMPO cellulose nanofibril (TOCNF) laminates were fabricated using a layup method. Two different TOCNF layers were tested, a neat TOCNF and a TOCNF with polyvinyl alcohol (PVA) strengthening aid with four different epoxy formulations as interlayers for the laminates. Flexural testing showed a correlation between the presence of stronger layers (TOCNFs + PVA) in the laminate with a higher flexural strength, bending modulus, and work of failure. Different modes of fracture within the laminates occurred based on epoxy type. A stiffer epoxy generated a reduced mechanical response and substantial intralayer damage. On the other hand, a more ductile epoxy increased the WOF of the laminates, inducing a higher delamination at the interface. The addition of a silane coupling agent (APTES) resulted in a higher compatibility between the TOCNFs and epoxy, generating an increased ultimate tensile strength (UTS) and a decreased energy to rupture associated with the reduction of crack digression mechanisms in the system. In general, laminates with stronger TOCNF layers (TOCNF + PVA) and increased adhesion (APTES), showed a flexural strength increase of 61%, a bending modulus increase of 80% and the same work of failure when compared with the original laminates. Finally, impact testing of TOCNF materials was performed for the first time in literature, the specific energy to rupture of laminates was comparable to those achieved by acrylic and borosilicate glass, while maintaining a higher or similar specific strength to glass. Laminates showed good transparency and low haziness. Graphic abstract
更多
查看译文
关键词
Cellulose nanofibril laminates, Composites, Adhesion, Crack digression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要