Sea Otter Effects On Trophic Structure Of Seagrass Communities In Southeast Alaska

MARINE ECOLOGY PROGRESS SERIES(2021)

引用 1|浏览0
暂无评分
摘要
Previous research in southeast Alaska on the effects of sea otters Enhydra lutris in seagrass Zostera marina communities identified many but not all of the trophic relationships that were predicted by a sea otter-mediated trophic cascade. To further resolve these trophic connections, we compared biomass, carbon (delta C-13) and nitrogen (delta N-15) stable isotope (SI), and fatty acid (FA) data from 16 taxa at 3 sites with high and 3 sites with low sea otter density (8.2 and 0.1 sea otters km(-2), respectively). We found lower crab and clam biomass in the high sea otter region but did not detect a difference in biomass of other seagrass community taxa or the overall community isotopic niche space between sea otter regions. Only staghorn sculpin differed in delta C-13 between regions, and Fucus, sugar kelp, butter clams, dock shrimp, and shiner perch differed in delta N-15. FA analysis indicated multivariate dissimilarity in 11 of the 15 conspecifics between sea otter regions. FA analysis found essential FAs, which consumers must obtain from their diet, including 20:5 omega 3 (EPA) and 22:6 omega 3 (DHA), were common in discriminating conspecifics between sea otter regions, suggesting differences in consumer diets. Further FA analysis indicated that many consumers rely on diverse diets, regardless of sea otter region, potentially buffering these consumers from sea otter-mediated changes to diet availability. While sea otters are major consumers in this system, further studies are needed to understand the mechanisms responsible for the differences in biomarkers between regions with and without sea otters.
更多
查看译文
关键词
Food web, Fatty acid, Stable isotope, Apex predator, Trophic cascade
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要