Gold/Ultra-High Molecular Weight Polyethylene Nanocomposites For Electrical Energy Storage: Enhanced Recovery Efficiency Upon Uniaxial Deformation

JOURNAL OF APPLIED POLYMER SCIENCE(2021)

Cited 7|Views7
No score
Abstract
The growing demand for renewable energy sources has prompted the development of dielectric materials with the ability to store and efficiently recover electrical energy. Here, we correlate the structure and thermal conductivity of uniaxially oriented disentangled ultra-high molecular weight polyethylene (dis-UHMWPE) composites reinforced with gold nanoparticles with their electrical properties and potential application as electrical energy storage devices. Stretching increases the orientation of the polymer chains and thus the crystallinity and reduces the aggregation of gold nanoparticles while the thermal conductivity enhances significantly along the orientation axis. The structural changes driven by stretching result in two competing effects; on the one hand, the crystallinity increase reduces the permittivity of the composites and increases the resistivity, while on the other hand the recovery efficiency of oriented materials excels that of unstretched samples by up to 6 times at 5 s. Therefore, our work shows the structure-property relationship in electrical energy storage materials.
More
Translated text
Key words
dielectric properties, energy storage, nanocomposites, polyolefins, thermal properties
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined