A Study Of Wave-Induced Effects On Sea Surface Temperature Simulations During Typhoon Events

JOURNAL OF MARINE SCIENCE AND ENGINEERING(2021)

Cited 11|Views1
No score
Abstract
In this work, we investigate sea surface temperature (SST) cooling under binary typhoon conditions. We particularly focus on parallel- and cross-type typhoon paths during four typhoon events: Tembin and Bolaven in 2012, and Typhoon Chan-hom and Linfa in 2015. Wave-induced effects were simulated using a third-generation numeric model, WAVEWATCH III (WW3), and were subsequently included in SST simulations using the Stony Brook Parallel Ocean Model (sbPOM). Four wave-induced effects were analyzed: breaking waves, nonbreaking waves, radiation stress, and Stokes drift. Comparison of WW3-simulated significant wave height (SWH) data with measurements from the Jason-2 altimeter showed that the root mean square error (RMSE) was less than 0.6 m with a correlation (COR) of 0.9. When the four typhoon-wave-induced effects were included in sbPOM simulations, the simulated SSTs had an RMSE of 1 degrees C with a COR of 0.99 as compared to the Argos data. This was better than the RMSE and COR recovered between the measured and simulated SSTs, which were 1.4 degrees C and 0.96, respectively, when the four terms were not included. In particular, our results show that the effects of Stokes drift, as well as of nonbreaking waves, were an important factor in SST reduction during binary typhoons. The horizontal profile of the sbPOM-simulated SST for parallel-type typhoon paths (Typhoons Tembin and Bolaven) suggested that the observed finger pattern of SST cooling (up to 2 degrees C) was probably caused by drag from typhoon Tembin. SST was reduced by up to 4 degrees C for cross-type typhoon paths (Typhoons Chan-hom and Linfa). In general, mixing significantly increased when the four wave-induced effects were included. The vertical profile of SST indicated that disturbance depth increased (up to 100 m) for cross-type typhoon paths because the mixing intensity was greater for cross-type typhoons than for parallel-type typhoons.
More
Translated text
Key words
typhoon wave, sea surface temperature, WAVEWATCH-III, sbPOM
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined