谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Evidence Of New 2d Material: Cu2te

2D MATERIALS(2020)

引用 17|浏览13
暂无评分
摘要
The number of two-dimensional (2D) materials has grown steadily since the discovery of graphene. Each new 2D material demonstrated unusual physical properties offering a large flexibility in their tailoring for high-tech applications. Here, we report on the formation and characterization of an uncharted 2D material: 'Cu2Te alloy monolayer on Cu(111) surface'. We have successfully grown a 2D binary Te-Cu alloy using a straightforward approach based on chemical deposition method. Low electron energy diffraction (LEED) and scanning tunneling microscopy (STM) results reveal the existence of a well-ordered alloy monolayer characterized by (root 3 x root 3)R30 degrees superstructure, while the x-ray photoemission spectroscopy (XPS) measurements indicate the presence of single chemical environment of the Te atoms associated with the Te-Cu bonding. Analysis of the valence band properties by angle resolved photoemission spectroscopy (ARPES); in particular the electronic states close to the Fermi level suggests a strong hybridization between Te and Cu electronic states leading to an appearance of new dispersive bands localized at the surface alloy, which is confirmed by first-principles calculations. These bands are strongly influenced by the surface reconstruction and undergo a back-folding at the boundaries of the reduced surface Brillouin zone (SBZ). More interesting, a band gap of about 0.91 eV and a Rashba splitting in the conduction band are obtained. These findings taken together clearly prove the presence of 2D-type electron system within the Cu2Te alloy layer, which is promising for spintronic application.
更多
查看译文
关键词
2D materials,Cu2Te,photoemission,STM,first-principles calculation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要