Heterojunction Photocatalysts Based On 2d Materials: The Role Of Configuration

ADVANCED SUSTAINABLE SYSTEMS(2020)

引用 113|浏览8
暂无评分
摘要
Semiconductor photocatalysis is currently attracting tremendous attention as it holds great potential to address the issues of energy shortage and environmental pollution. 2D materials are excellent candidates for photocatalysis owing to their attractive structural and electronic properties. However, practical applications of 2D materials are still hindered due to limitations, such as fast electron-hole recombination and poor redox ability, both of which lead to low efficiency of photocatalytic reactions. Constructing a heterojunction is the most widely used strategy to solve these problems. In particular, heterojunctions composed of 2D materials interfaced with other semiconductors of different dimensionalities can integrate the respective advantages and mitigate the drawbacks of each component. Hence, this review focuses on the recent developments in the rational design of 2D material-based heterojunction photocatalysts with different configurations. The synthetic strategies, physicochemical properties, component functions, photocatalytic mechanisms, and applications of these heterojunctions are systematically summarized. Emphasis is placed on correlations between photocatalytic performance and heterojunction configuration. Finally, the ongoing challenges and potential directions for future development of 2D material-based heterojunction photocatalysts are also proposed.
更多
查看译文
关键词
2D materials, configuration, dimensionality, heterojunctions, photocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要