New Laue Micro-diffraction Setup for Real-Time In Situ Microstructural Characterization of Materials Under External Stress

D. Popov,S. Sinogeikin,C. Park, E. Rod,J. Smith, R. Ferry, C. Kenney-Benson,N. Velisavljevic,G. Shen

wos(2019)

引用 3|浏览2
暂无评分
摘要
Laue X-ray diffraction (XRD) is a powerful probe to characterize pressure-/strain-induced microstructural changes in materials. The use of brilliant synchrotron radiation allows Laue XRD to be measured in a fast manner, leading to microstructural characterization, such as two-dimensional maps of single-crystals, their texture, and deformation, to be made in time-resolved mode with temporal resolution down to seconds. This technique can be very efficient in the studies of mechanisms of deformation, grain growth, recrystallization, and phase transitions. A progress has been obtained to extend application of Laue diffraction to high-pressure area. Recent case studies of α → β transition in Si and α → ω transitions in Zr are briefly reported. A new experimental setup specifically optimized for real-time in situ Laue measurements has been developed at the 16-BMB beamline at the Advanced Photon Source. Due to the large X-ray energy range, which is typically up to 70 keV, a polychromatic beam diffraction technique can be efficiently implemented despite some limits introduced to the scattering angle by strain generation devices. Currently, the X-ray beam is focused at the sample position down to ~2.2 × 2.2 μm2 at the full width at the half maximum. Precision sample translation stages provide fast data collection with step sizes down to 0.5 μm.
更多
查看译文
关键词
Laue diffraction, Microstructure, High pressure, Synchrotron radiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要