Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque

NATURE ELECTRONICS(2020)

引用 84|浏览4
暂无评分
摘要
The electrical manipulation of magnetization and exchange bias in antiferromagnet/ferromagnet thin films could be of use in the development of the next generation of spintronic devices. Current-controlled magnetization switching can be driven by spin–orbit torques generated in an adjacent heavy-metal layer, but these structures are difficult to integrate with exchange bias switching and tunnelling magnetoresistance measurements. Here, we report the current-induced switching of the exchange bias field in a perpendicularly magnetized IrMn/CoFeB bilayer structure using a spin–orbit torque generated in the antiferromagnetic IrMn layer. By manipulating the current direction and amplitude, independent and repeatable switching of the magnetization and exchange bias field below the blocking temperature can be achieved. The critical current density for the exchange bias switching is found to be larger than that for CoFeB magnetization reversal. X-ray magnetic circular dichroism, polarized neutron reflectometry measurements and micromagnetic simulations show that a small net magnetization within the IrMn interface plays a crucial role in these phenomena.
更多
查看译文
关键词
Electrical and electronic engineering,Electronic and spintronic devices,Spintronics,Electrical Engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要