PIL transcription factors directly interact with SPLs and repress tillering/branching in plants

NEW PHYTOLOGIST(2022)

引用 17|浏览26
暂无评分
摘要
Tillering is an important parameter of plant architecture in cereal crops. In this study, we identified the PHYTOCHROME-INTERACTING FACTOR-LIKE (PIL) family transcription factors as new repressors of tillering in cereal crops. Using biochemical and genetic approaches, we explore the roles of TaPIL1 in regulating wheat plant architecture. We found that the PIL protein TaPIL1 controls tiller number in wheat. Overexpression of TaPIL1 reduces wheat tiller number; additionally, overexpression of TaPIL1-SUPERMAN repression domain increases wheat tiller number. Furthermore, we show that TaPIL1 activates the transcriptional expression of wheat TEOSINTE BRANCHED1 (TaTB1); moreover, TaPIL1 physically interacts with wheat SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (TaSPL)3/17, which are activators of TaTB1 transcription. In rice, overexpression and loss-of-function mutations of OsPIL11 reduce or increase tiller number by regulating the expression of OsTB1. In Arabidopsis, we demonstrate that PHYTOCHROME-INTERACTING FACTOR 4 interacts with SPL9 to inhibit shoot branching. This study reveals that PIL family transcription factors directly interact with SPLs and play an important role in repressing tillering/branching in plants.
更多
查看译文
关键词
PHYTOCHROME-INTERACTING FACTOR-LIKE (PIL), rice, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL), TEOSINTE BRANCHED1 (TB1), tillering, wheat
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要