Substituent-mediated quantum interference toward a giant single-molecule conductance variation

NANOTECHNOLOGY(2022)

引用 2|浏览12
暂无评分
摘要
Quantum interference (QI) in single molecular junctions shows a promising perspective for realizing conceptual nanoelectronics. However, controlling and modulating the QI remains a big challenge. Herein, two-type substituents at different positions of meta-linked benzene, namely electron-donating methoxy (-OMe) and electron-withdrawing nitryl (-NO2), are designed and synthesized to investigate the substituent effects on QI. The calculated transmission coefficients T(E) indicates that -OMe and -NO2 could remove the antiresonance and destructive quantum interference (DQI)-induced transmission dips at position 2. -OMe could raise the antiresonance energy at position 4 while -NO2 groups removes the DQI features. For substituents at position 5, both of them are nonactive for tuning QI. The conductance measurements by scanning tunneling microscopy break junction show a good agreement with the theoretical prediction. More than two order of magnitude single-molecule conductance on/off ratio could be achieved at the different positions of -NO2 substituent groups at room temperature. The present work proves chemical substituents can be used for tuning QI features in single molecular junctions, which provides a feasible way toward realization of high-performance molecular devices.
更多
查看译文
关键词
quantum interference, molecular junctions, scanning tunneling microscopy break junction, substituents
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要