Diverse pathogens activate the host RIDD pathway to subvert BLOS1-directed immune defense

biorxiv(2021)

引用 0|浏览2
暂无评分
摘要
The phagocytosis and destruction of pathogens in lysosomes constitute central elements of innate immune defense. Here, we show that Brucella , the causative agent of brucellosis, the most prevalent bacterial zoonosis globally, subverts this immune defense pathway by activating regulated IRE1α-dependent decay (RIDD) of mRNAs encoding BLOS1, a protein that promotes endosome-lysosome fusion. RIDD-deficient cells and mice harboring a RIDD-incompetent variant of IRE1α were resistant to infection. Non-functional Blos1 struggled to assemble the BLOC-1-related complex (BORC), resulting in differential recruitment of BORC-related lysosome trafficking components, perinuclear trafficking of Brucella -containing vacuoles (BCVs), and enhanced susceptibility to infection. The RIDD-resistant Blos1 variant maintains the integrity of BORC and a higher-level association of BORC-related components that promote centrifugal lysosome trafficking, resulting in enhanced BCV peripheral trafficking and lysosomal-destruction, and resistance to infection. These findings demonstrate that host RIDD activity on BLOS1 regulates Brucella intracellular parasitism by disrupting BORC-directed lysosomal trafficking. Notably, coronavirus MHV also subverted the RIDD-BLOS1 axis to promote intracellular replication. Our work therefore establishes BLOS1 as a novel immune defense factor whose activity is hijacked by diverse pathogens. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
diverse pathogens,host ridd pathway,defense
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要