A positively tuned voltage indicator reveals electrical correlates of calcium activity in the brain

biorxiv(2021)

引用 8|浏览16
暂无评分
摘要
Neuronal activity is routinely recorded in vivo using genetically encoded calcium indicators (GECIs) and 2-photon microscopy, but calcium imaging is poorly sensitive for single voltage spikes under typical population imaging conditions, lacks temporal precision, and does not report subthreshold voltage changes. Genetically encoded voltage indicators (GEVIs) offer better temporal resolution and subthreshold sensitivity, but 2-photon detection of single spikes in vivo using GEVIs has required specialized imaging equipment. Here, we report ASAP4b and ASAP4e, two GEVIs that brighten in response to membrane depolarization, inverting the fluorescence-voltage relationship of previous ASAP-family GEVIs. ASAP4b and ASAP4e feature 180% and 210% fluorescence increases to 100-mV depolarizations, respectively, as well as modestly prolonged deactivation and high photostability. We demonstrate single-trial detection of spikes and oscillations in vivo with standard 1 and 2-photon imaging systems, and confirm improved temporal resolution in comparison to calcium imaging on the same equipment. Thus, ASAP4b and ASAP4e GEVIs extend the uses of existing imaging equipment to include multiunit voltage imaging in vivo . One Sentence Summary Positively tuned ASAP voltage indicators facilitate imaging of electrical activity in the brain. ### Competing Interest Statement M.Z.L. is an inventor on patent US9606100 describing ASAP1.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要