Elevated transcriptional pausing of RNA polymerase II underlies acquired resistance to radiotherapy

biorxiv(2021)

引用 0|浏览6
暂无评分
摘要
As the mainstay modality for many malignancies, particularly inoperable solid tumors such as nasopharyngeal carcinoma (NPC), ionizing radiation (IR) induces a variety of lesions in genomic DNA, evoking a multipronged DNA damage response to interrupt many cellular processes including transcription. The turbulence in transcription, depending on the nature of DNA lesions, encompasses local blockage of RNA polymerase II (RNAPII) near the damage sites, as well as a less understood genome-wide alteration. How the transcriptional change influences the effectiveness of radiotherapy remains unclear. Using a panel of NPC and lung cancer cell lines, we observe increased phosphorylation at serine 5 (pS5) of the RNAPII after IR, indicating an accumulation of paused RNAPII. Remarkably, a similar increase of pS5 is seen in IR-resistant cells. ChIP-seq analysis of RNAPII distribution confirms this increased pausing both in IR-treated and IR-resistant NPC cells, notably on genes involved in radiation response and cell cycle. Accordingly, many of these genes show downregulated transcripts abundance in IR-resistant cells, and individual knockdown some of them such as TP53 and NEK7 endows NPC cells with varying degrees of IR-resistance. Decreasing pS5 of RNAPII and hence tuning down transcriptional pausing by inhibiting CDK7 reverses IR-resistance both in cell culture and xenograft models. Our results therefore uncover an unexpected link between elevated transcriptional pausing and IR-resistance. Given the recurrent NPC tissues display a steady increase in pS5 compared to the paired primary tissues, we suggest that CDK7 inhibitors can be used in combination with radiotherapy to increase sensitivity and thwart resistance. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
rna polymerase,radiotherapy,transcriptional pausing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要