A G-lectin Receptor Kinase is a Negative Regulator of Arabidopsis Immunity Against Root-Knot Nematode Meloidogyne incognita

biorxiv(2021)

引用 3|浏览9
暂无评分
摘要
Root-knot nematodes ( Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. For infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, in the root pericycle. Previously, we found that nematode perception and early plant responses were similar to those for microbial pathogens and require the BAK1 co-receptor in Arabidopsis thaliana and tomato. To identify additional receptors involved in this process, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES 1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51 , and enhanced H22 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS burst were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promotor-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Taken together, our results indicate that ERN1 is an important negative regulator of immunity. One sentence summary A plasma membrane localized G-lectin receptor kinase acts as a negative immune regulator by interfering with defense responses activated by nematode and microbial elicitors.
更多
查看译文
关键词
arabidopsis immunity,kinase,<i>meloidogyne incognita</i>,g-lectin,root-knot
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要