Coherent Gene Assemblies: Example, Yeast Cell Division Cycle, CDC

biorxiv(2021)

Cited 0|Views2
No score
Abstract
A fresh approach to the dynamics of gene assemblies is presented. Central to the exposition are the concepts of: high value genes; correlated activity; and the orderly unfolding of gene dynamics; and especially dynamic mode decomposition, DMD, a remarkable new tool for dissecting dynamics. This program is carried out, in detail, for the Orlando et al yeast database ([Orlando et al. 2008][1]). It is shown that the yeast cell division cycle, CDC, requires no more than a six dimensional space, formed by three complex temporal modal pairs, each associated with characteristic aspects of the cell cycle: (1) A mother cell cohort that follows a fast clock; (2) A daughter cell cohort that follows a slower clock; (3) inherent gene expression, unrelated to the CDC. A derived set of sixty high-value genes serves as a model for the correlated unfolding of gene activity. Confirmation of our results comes from an independent database, and other considerations. The present analysis, leads naturally, to a Fourier description, for the sparsely sampled data. From this, resolved peak times of gene expression are obtained. This in turn leads to prediction of precise times of expression in the unfolding of the CDC genes. The activation of each gene appears as uncoupled dynamics from the mother and daughter cohorts, of different durations. These deliberations lead to detailed estimates of the fraction of mother and daughter cells, specific estimates of their maturation periods, and specific estimates of the number of genes in these cells. An algorithmic framework for yeast modeling is proposed, and based on the new analyses, a range of theoretical ideas and new experiments are suggested. A Supplement contains additional material and other perspectives. ### Competing Interest Statement The authors have declared no competing interest. [1]: #ref-10
More
Translated text
Key words
yeast cell division cycle,gene,assemblies
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined