Image classification and cognition using contour curvature statistics

bioRxiv (Cold Spring Harbor Laboratory)(2021)

Cited 0|Views3
No score
Abstract
Although the higher order mechanisms behind object representation and classification in the visual system are still not well understood, there are hints that simple shape primitives such as “curviness” might activate neural activation and guide this process. Drawing on elementary invariance principles, we propose that a statistical geometric object, the probability distribution of the normalized contour curvatures (NCC) in the intensity field of a planar image, has the potential to represent and classify categories of objects. We show that NCC is sufficient for discriminating between cognitive categories such as animacy, size and type, and demonstrate the robustness of this metric to variation in illumination and viewpoint, consistent with neurobiological constraints and psychological experiments. A generative model for producing artificial images with the observed NCC distributions highlights the key features that our metric captures and just as importantly, those that it does not. More broadly, our study points to the need for statistical geometric approaches to cognition that build in both the statistics and the natural invariances of the sensory world. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined