SOX2-phosphorylation toggles a bistable differentiation-switch in squamous cell carcinoma

biorxiv(2021)

引用 0|浏览4
暂无评分
摘要
The fate choice between stem cell self-renewal and differentiation is regulated by bistable transcriptional networks, which are balanced in homeostasis and imbalanced in tumors. Yet, how stem cells switch from self-renewal to differentiation remains a conundrum. Here, we discover a molecular mechanism that allows stem cell-like tumor propagating cells (TPCs) in squamous cell carcinomas (SCCs) to switch from a mutually exclusive SOX2-PITX1-TP63 self-renewal circuit to a KLF4 driven differentiation program, dependent on the relative occupancy of a novel Klf4 -regulatory enhancer cluster ( Klf4EC944 ) by SOX2 or KLF4, respectively. We find SOX2 occupies this site in TPCs to inhibit Klf4 transcription, but upon phosphorylation SOX2 becomes evicted from Klf4EC944 , allowing residual KLF4 to occupy this site instead, boost the expression of KLF4 and its downstream targets, and differentiate self-renewing TPCs into post-mitotic SCC cells. This mechanism allows SOX2 to promote self-renewal and tumor formation, while preserving the differentiation potential in SCC cells. Our data suggest that stochastic cell fate decisions depend on the effective concentration of enzymatically regulated transcription factors. The surprising specificity by which SOX2-phosphorylation governs the bistable Klf4EC944 network-switch in SCCs reveals a conceptual framework for the identification of similar switches in other stem cell and cancer types and their potential development into cell type specific differentiation therapies for diseases in which tissue homeostasis has gone awry. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
squamous cell carcinoma,differentiation-switch
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要