Chrome Extension
WeChat Mini Program
Use on ChatGLM

Biophysical network models of phase-synchronization in MEG resting-state

biorxiv(2021)

Cited 0|Views4
No score
Abstract
Magnetoencephalography (MEG) is used extensively to study functional connectivity (FC) networks of phase-synchronization, but the relationship of these networks to their biophysical substrates is poorly understood. Biophysical Network Models (BNMs) have been used to produce networks corresponding to MEG-derived networks of phase-synchronization, but the roles of inter-regional conduction delays, the structural connectome and dynamics of model of individual brain regions, in obtaining this correspondence remain unknown. In this study, we investigated the roles of conduction delays, the structural connectome, and dynamics of models of individual regions, in obtaining a correspondence between model-generated and MEG-derived networks between left-hemispheric regions. To do this, we compared three BNMs, respectively comprising Wilson-Cowan oscillators interacting with diffusion Magnetic Resonance Imaging (MRI)-based patterns of structural connections through zero delays, constant delays and distance-dependent delays respectively. For the BNM whose networks corresponded most closely to the MEG-derived network, we used comparisons against null models to identify specific features of each model component, e . g . the pattern of connections in the structure connectome, that contributed to the observed correspondence. The Wilson-Cowan zero delays model produced networks with a closer correspondence to the MEG-derived network than those produced by the constant delays model, and the same as those produced by the distance-dependent delays model. Hence, there is no evidence that including conduction delays improves the correspondence between model-generated and MEG-derived networks. Given this, we chose the Wilson-Cowan zero delays model for further investigation. Comparing the Wilson-Cowan zero delays model against null models revealed that both the pattern of structural connections and Wilson-Cowan oscillatory dynamics contribute to the correspondence between model-generated and MEG-derived networks. Our investigations yield insight into the roles of conduction delays, the structural connectome and dynamics of models of individual brain regions, in obtaining a correspondence between model-generated and MEG-derived networks. These findings result in a parsimonious BNM that produces networks corresponding closely to MEG-derived networks of phase-synchronization. Highlights ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
Key words
biophysical network models,phase-synchronization,resting-state
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined