Fast grip force adaptation to friction relies on localized fingerpad strains

SCIENCE ADVANCES(2024)

引用 2|浏览5
暂无评分
摘要
During object manipulation, humans adjust the grip force to friction, such that slippery objects are squeezed more firmly than sticky ones. This essential mechanism to keep a stable grasp relies on feedback from tactile afferents innervating the fingertips, that are sensitive to local skin strains. To test if this feedback originates from the skin-object interface, we asked participants to perform a grip-lift task with an instrumented object able to monitor skin strains at the contact through transparent plates of different frictions. We observed that, following an unbeknown change in plate across trials, participants adapted their grip force to friction. After switching from high to low friction, we found a significant increase in strain inside the contact arising similar to 100 ms before the modulation of grip force, suggesting that differences in strain patterns before lift-off are used by the nervous system to quickly adjust the force to the frictional properties of manipulated objects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要