Chrome Extension
WeChat Mini Program
Use on ChatGLM

Dendro-somatic synaptic inputs to ganglion cells violate receptive field and connectivity rules in the mammalian retina

Current Biology(2021)

Cited 0|Views18
No score
Abstract
In retinal neurons, morphology strongly influences visual response features. Ganglion cell (GC) dendrites ramify in distinct strata of the inner plexiform layer (IPL) so that GCs responding to light increments (ON) or decrements (OFF) receive appropriate excitatory inputs. This vertical stratification prescribes response polarity and ensures consistent connectivity between cell types, whereas the lateral extent of GC dendritic arbors typically dictates receptive field (RF) size. Here, we identify circuitry in mouse retina that contradicts these conventions. A2 amacrine cells are interneurons understood to mediate “cross-over” inhibition by relaying excitatory input from the ON layer to inhibitory outputs in the OFF layer. Ultrastructural and physiological analyses show, however, that some A2s deliver powerful inhibition to OFF GC somas and proximal dendrites in the ON layer, rendering their inhibitory RFs smaller than their dendritic arbors. This OFF pathway, avoiding entirely the OFF region of the IPL, challenges several tenets of retinal circuitry. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined