Chrome Extension
WeChat Mini Program
Use on ChatGLM

Structure of the mini-RNA-guided endonuclease CRISPR-CasΦ3

Nature Communications(2021)

Cited 16|Views17
No score
Abstract
CRISPR-CasΦ is a novel family of miniaturized RNA-guided endonucleases from phages [1][1],[2][2]. These novel ribonucleoproteins (RNPs) provide a compact scaffold gathering all key activities of a genome editing tool[2][2]. Here, we provide the first structural insight into CasΦ singular DNA targeting and cleavage mechanism by determining the cryoEM structure of CasΦ3 with the triple strand R-loop generated after DNA cleavage. The structure reveals the unique machinery for target unwinding to form the crRNA-DNA hybrid and cleaving the target DNA. The protospacer adjacent motif (PAM) is recognised by the target strand (T-strand) and non-target strand (NT-strand) PAM interacting domains (TPID and NPID). Unwinding occurs after insertion of the conserved α1 helix disrupting the dsDNA, thus facilitating the crRNA-DNA hybrid formation. The NT-strand is funnelled towards the RuvC catalytic site, while a long helix of TPID separates the displaced NT-strand and the crRNA-DNA hybrid avoiding DNA re-annealing. The crRNA-DNA hybrid is directed to the stop (STP) domain that splits the hybrid guiding the T-strand towards the RuvC active site. The conserved RuvC insertion of the CasΦ family is extended along the hybrid, interacting with the phosphate backbone of the crRNA. A cluster of hydrophobic residues anchors the RuvC insertion in a cavity of the STP domain. The assembly of the hybrid promotes the shortening of the RuvC insertion, thus pulling the STP towards the RuvC active site to activate catalysis. These findings illustrate why CasΦ unleashes unspecific cleavage activity, degrading ssDNA molecules after activation. Site-directed mutagenesis in key residues support CasΦ3 target DNA and non-specific ssDNA cutting mechanism. Our analysis provides new avenues to redesign the compact CRISPR-CasΦ nucleases for genome editing. ### Competing Interest Statement Guillermo Montoya and Stefano Stella declare that they are co-founders of Twelve Bio. A patent application has been filed relating to this work. [1]: #ref-1 [2]: #ref-2
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined