PpRPK2 modulates auxin homeostasis and transport to specify stem cell identity and plant shape in the moss Physcomitrella

biorxiv(2021)

Cited 2|Views9
No score
Abstract
Plant shape is determined by the activity of stem cells in the growing tips, and evolutionary changes in shape are linked to changes in stem cell function. The CLAVATA pathway is a key regulator of stem cell function in the multicellular shoot tips of Arabidopsis, acting via the WUSCHEL transcription factor to modulate hormone homeostasis. Broad scale evolutionary comparisons have shown that CLAVATA is a conserved regulator of land plant stem cell function, but CLAVATA acts independently of WUSCHEL-like (WOX) proteins in bryophytes, raising questions about the evolution of stem cell function and the role of the CLAVATA pathway. Here we show that the moss (Physcomitrella) CLAVATA pathway affects stem cell activity and overall plant shape by modulating hormone homeostasis. CLAVATA pathway components are expressed in the tip cells of filamentous tissues, regulating cell identity, filament branching patterns and plant spread. The PpRPK2 receptor-like kinase plays the major role and is expressed more strongly than other receptor-encoding genes. Pprpk2 mutants have abnormal responses to cytokinin, and auxin transport inhibition and show reduced PIN auxin transporter expression. We propose a model whereby PpRPK2 modulates PIN activity to determine stem cell identity and overall plant form in Physcomitrella. Our data indicate that CLAVATA-mediated auxin homeostasis is a fundamental property of plant stem cell function likely exhibited by the last shared common ancestor of land plants. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined