Protective role of the Atg8 homologue Gabarapl1 in regulating cardiomyocyte glycophagy in diabetic heart disease

biorxiv(2021)

Cited 2|Views20
No score
Abstract
Diabetic heart disease is highly prevalent and characterized by diastolic dysfunction. The mechanisms of diabetic heart disease are poorly understood and no targeted therapies are available. Here we show that the diabetic myocardium (type 1 and type 2) is characterized by marked glycogen elevation and ectopic cellular localization - a paradoxical metabolic pathology given suppressed cardiomyocyte glucose uptake in diabetes. We demonstrate involvement of a glycogen-selective autophagy pathway (‘glycophagy’) defect in mediating this pathology. Genetically manipulated deficiency of Gabarapl1, an Atg8 autophagy homologue, induces cardiac glycogen accumulation and diastolic dysfunction. Stbd1, the Gabarapl1 cognate autophagosome partner is identified as a unique component of the early glycoproteome response to hyperglycemia in cardiac, but not skeletal muscle. Cardiac-targeted in vivo Gabarapl1 gene delivery normalizes glycogen levels, diastolic function and cardiomyocyte mechanics. These findings reveal that cardiac glycophagy is a key metabolic homeostatic process perturbed in diabetes that can be remediated by Gabarapl1 intervention. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined