Cell-specific chromatin landscape of human coronary artery resolves regulatory mechanisms of disease risk

biorxiv(2021)

引用 4|浏览10
暂无评分
摘要
Coronary artery disease (CAD) is a complex inflammatory disease involving genetic influences across several cell types. Genome-wide association studies (GWAS) have identified over 170 loci associated with CAD, where the majority of risk variants reside in noncoding DNA sequences impacting cis -regulatory elements (CREs). Here, we applied single-cell ATAC-seq to profile 28,316 cells across coronary artery segments from 41 patients with varying stages of CAD, which revealed 14 distinct cellular clusters. We mapped ~320,000 accessible sites across all cells, identified cell type-specific elements, transcription factors, and prioritized functional CAD risk variants via quantitative trait locus and sequence-based predictive modeling. We identified a number of candidate mechanisms for smooth muscle cell transition states and identified putative binding sites for risk variants. We further employed CRE to gene linkage to nominate disease-associated key driver transcription factors such as PRDM16 and TBX2. This single cell atlas provides a critical step towards interpreting cis -regulatory mechanisms in the vessel wall across the continuum of CAD risk. ### Competing Interest Statement Dr. Bjorkegren is a shareholder in Clinical Gene Network AB who have an invested interest in STARNET. All other authors declare that they have no competing interests relevant to the contents of this paper to disclose.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要