The impact of mutational processes on structural genomic plasticity in cancer cells

bioRxiv (Cold Spring Harbor Laboratory)(2021)

Cited 3|Views33
No score
Abstract
Structural genome alterations are determinants of cancer ontogeny and therapeutic response. While bulk genome sequencing has enabled delineation of structural variation (SV) mutational processes which generate patterns of DNA damage, we have little understanding of how these processes lead to cell-to-cell variations which underlie selection and rates of accrual of different genomic lesions. We analysed 309 high grade serous ovarian and triple negative breast cancer genomes to determine their mutational processes, selecting 22 from which we sequenced >22,000 single cell whole genomes across a spectrum of mutational processes. We show that distinct patterns of cell-to-cell variation in aneuploidy, copy number alteration (CNA) and segment length occur in homologous recombination deficiency (HRD) and fold-back inversion (FBI) phenotypes. Widespread aneuploidy through induction of HRD through BRCA1 and BRCA2 inactivation was mirrored by continuous whole genome duplication in HRD tumours, contrasted with early ploidy fixation in FBI. FBI tumours exhibited copy number distributions skewed towards gains, widespread clone-specific variation in amplitude of high-level amplifications, often impacting oncogenes, and break-point variability consistent with progressive genomic diversification, which we termed serriform structural variation (SSV). SSVs were consistent with a CNA-based molecular clock reflecting a continual and distributed process across clones within tumours. These observations reveal previously obscured genome plasticity and evolutionary properties with implications for cancer evolution, therapeutic targeting and response. ### Competing Interest Statement BW reports ad hoc membership of the advisory board of Repare Therapeutics, outside the scope of this study. JSR-F reports receiving personal/consultancy fees from Goldman Sachs, REPARE Therapeutics, Paige.AI and Eli Lilly, membership of the scientific advisory boards of VolitionRx, REPARE Therapeutics and Paige.AI, membership of the Board of Directors of Grupo Oncoclinicas, and ad hoc membership of the scientific advisory boards of Roche Tissue Diagnostics, Ventana Medical Systems, Novartis, Genentech and InVicro, outside the scope of this study. SPS and SA are shareholders and consultants of Canexia Health.
More
Translated text
Key words
structural genomic plasticity,mutational processes,cancer cells
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined