The FusX TALE Base Editor (FusXTBE) for rapid mitochondrial DNA programming of human cells in vitro and zebrafish disease models in vivo

The CRISPR journal(2021)

引用 9|浏览5
暂无评分
摘要
Functional analyses of mitochondria have been hampered by few effective approaches to manipulate mtDNA and a lack of existing animal models. Recently a TALE-derived base editor was shown to induce C-to-T (or G-to-A) sequence changes in mtDNA. We report here the FusX TALE Base Editor (FusXTBE) to facilitate broad-based access to TALE mitochondrial base editing technology. TALE Writer is a de novo in silico design tool to map potential mtDNA base editing sites. FusXTBE was demonstrated to function with comparable activity to the initial base editor in human cells in vitro . Zebrafish embryos were used as a pioneering in vivo test system, with FusXTBE inducing 90+% editing efficiency in mtDNA loci, the first example of majority mtDNA heteroplasmy induction in any system. Gene editing specificity as precise as a single nucleotide was observed in vivo for a protein-coding gene. Non-destructive genotyping enables single animal mtDNA analyses for downstream biological functional genomics applications. FusXTBE is a new gene editing toolkit for exploring important questions in mitochondrial biology and genetics. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要