A non-coding A-to-T Kozak site change related to the transmissibility of Alpha, Delta and Omicron VOCs

Molecular Biology and Evolution(2022)

引用 6|浏览21
暂无评分
摘要
Three prevalent SARS-CoV-2 Variants of Concern (VOCs) were emerged and caused epidemic waves. It is essential to uncover the key genetic changes that cause the high transmissibility of VOCs. However, different viral mutations are generally tightly linked so traditional population genetic methods may not reliably detect beneficial mutation. In this study, we proposed a new pandemic-scale phylogenomic approach to detect mutations crucial to transmissibility. We analyzed 3,646,973 high-quality SARS-CoV-2 genomic sequences and the epidemiology metadata. Based on the sequential occurrence order of mutations and the instantaneously accelerated furcation rate, the analysis revealed that two non-coding mutations at the position of 28271 (g.a28271-/t) might be crucial for the high transmissibility of Alpha, Delta and Omicron VOCs. Both two mutations cause an A-to-T change at the core Kozak site of the N gene. The analysis also revealed that the non-coding mutations (g.a28271-/t) alone are unlikely to cause high viral transmissibility, indicating epistasis or multilocus interaction in viral transmissibility. A convergent evolutionary analysis revealed that g.a28271-/t, S:P681H/R and N:R203K/M occur independently in the three-VOC lineages, suggesting a potential interaction among these mutations. Therefore, this study unveils that non-synonymous and non-coding mutations could affect the transmissibility synergistically. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要