Multi-omics profiling of U2AF1 mutants dissects pathogenic mechanisms affecting RNA granules in myeloid malignancies

biorxiv(2021)

引用 2|浏览19
暂无评分
摘要
Somatic mutations in splicing factors are of significant interest in myeloid malignancies and other cancers. U2AF1, together with U2AF2, is essential for 3’ splice site recognition. U2AF1 mutations result in aberrant splicing, but the molecular mechanism and the full spectrum of consequences on RNA biology have not been fully elucidated to date. We performed multi-omics profiling of in vivo RNA binding, splicing and turnover for U2AF1 S34F and Q157R mutants. We dissected specific binding signals of U2AF1 and U2AF2 and showed that U2AF1 mutations individually alter U2AF1-RNA binding, resulting in defective U2AF2 recruitment. We demonstrated a complex relationship between differential binding and splicing, expanding upon the currently accepted loss-of-binding model. Finally, we observed that U2AF1 mutations increase the formation of stress granules in both cell lines and primary acute myeloid leukemia samples. Our results uncover U2AF1 mutation-dependent pathogenic RNA mechanisms and provide the basis for developing targeted therapeutic strategies. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
u2af1 mutants,rna granules,multi-omics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要